SNARE protein-dependent glutamate release from astrocytes.
نویسندگان
چکیده
We investigated the cellular mechanisms underlying the Ca(2+)-dependent release of glutamate from cultured astrocytes isolated from rat hippocampus. Using Ca(2+) imaging and electrophysiological techniques, we analyzed the effects of disrupting astrocytic vesicle proteins on the ability of astrocytes to release glutamate and to cause neuronal electrophysiological responses, i.e., a slow inward current (SIC) and/or an increase in the frequency of miniature synaptic currents. We found that the Ca(2+)-dependent glutamate release from astrocytes is not caused by the reverse operation of glutamate transporters, because the astrocyte-induced glutamate-mediated responses in neurons were affected neither by inhibitors of glutamate transporters (beta-threo-hydroxyaspartate, dihydrokainate, and L-trans-pyrrolidine-2,4-dicarboxylate) nor by replacement of extracellular sodium with lithium. We show that Ca(2+)-dependent glutamate release from astrocytes requires an electrochemical gradient necessary for glutamate uptake in vesicles, because bafilomycin A(1), a vacuolar-type H(+)-ATPase inhibitor, reduced glutamate release from astrocytes. Injection of astrocytes with the light chain of the neurotoxin Botulinum B that selectively cleaves the vesicle-associated SNARE protein synaptobrevin inhibited the astrocyte-induced glutamate response in neurons. Therefore, the Ca(2+)-dependent glutamate release from astrocytes is a SNARE protein-dependent process that requires the presence of functional vesicle-associated proteins, suggesting that astrocytes store glutamate in vesicles and that it is released through an exocytotic pathway.
منابع مشابه
Vesicular glutamate transporter-dependent glutamate release from astrocytes.
Astrocytes exhibit excitability based on variations of their intracellular Ca2+ concentrations, which leads to glutamate release, that in turn can signal to adjacent neurons. This glutamate-mediated astrocyte-neuron signaling occurs at physiological intracellular Ca2+ levels in astrocytes and includes modulation of synaptic transmission. The mechanism underlying Ca2+-dependent glutamate release...
متن کاملGlutamate uptake and release by astrocytes are enhanced by Clostridium botulinum C3 protein.
Inhibition of Rho activity by Clostridium botulinum C3 transferase (C3bot) versatily changes functional properties of neural cells. Using cultivated mouse astrocytes, we show here that C3bot increases both uptake and secretion of glutamate. The enhanced glutamate uptake is initiated by an NFkappaB-dependent up-regulation of the glial glutamate transporter 1 that is efficaciously sorted to the p...
متن کاملProperties of Ca(2+)-dependent exocytosis in cultured astrocytes.
Astrocytes, a subtype of glial cells, have numerous characteristics that were previously considered exclusive for neurons. One of these characteristics is a cytosolic [Ca2+] oscillation that controls the release of the chemical transmitter glutamate and atrial natriuretic peptide. These chemical messengers appear to be released from astrocytes via Ca(2+)-dependent exocytosis. In the present stu...
متن کاملAstrocytes potentiate transmitter release at single hippocampal synapses.
Astrocytes play active roles in brain physiology. They respond to neurotransmitters and modulate neuronal excitability and synaptic function. However, the influence of astrocytes on synaptic transmission and plasticity at the single synapse level is unknown. Ca(2+) elevation in astrocytes transiently increased the probability of transmitter release at hippocampal area CA3-CA1 synapses, without ...
متن کاملAstrocytic glutamate release-induced transient depolarization and epileptiform discharges in hippocampal CA1 pyramidal neurons.
A paroxysmal depolarization shift (PDS) has been suggested to be a hallmark for epileptic activity in partial-onset seizures. By monitoring membrane potentials and currents in pairs of pyramidal neurons and astrocytes with dual patch-clamp recording and exocytosis of vesicles from astrocytes with two-photon laser scanning microscopy in hippocampal slices, we found that infusion of inositol 1,4,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 2 شماره
صفحات -
تاریخ انتشار 2000